Structure Reports

Online
ISSN 1600-5368

Chlorido\{2-[(dimethylamino)methyl]-phenyl- $\kappa^{2} N, C^{1}$ \}ellurium

Prakul Rakesh, ${ }^{\text {a }}$ Harkesh B. Singh ${ }^{\text {a }}$ and Ray J. Butcher ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
Correspondence e-mail: rbutcher99@yahoo.com

Received 7 December 2011; accepted 17 December 2011
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.043 ; w R$ factor $=0.096$; data-to-parameter ratio $=32.3$.

The crystal structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe}$, contains isolated molecules with no close $\mathrm{Te} \cdots \mathrm{Cl}$ intermolecular contacts and has the same composition as a previously published structure [Engman et al. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285-292]. However, in this case, the compound has crystallized in a centrosymmetric space group, unlike the previously published structure which contained enantiomerically pure chiral molecules. In all other aspects, the metrical parameters are similar. The molecules with a T-shaped coordination environment about the Te atom are linked into dimers by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Related literature

For a related structure, see: Engman et al. (2004). For related syntheses, see: Singh et al. (1990); Kaur et al. (1995).

Experimental

$\begin{array}{ll}\text { Crystal data } & \\ \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe} & \text { Monoclinic, } P 2_{1} / n \\ M_{r}=297.25 & a=6.4514(6) \AA\end{array}$

$$
\begin{aligned}
& b=7.0287(7) \AA \\
& c=23.847(2) \AA \\
& \beta=95.967(9)^{\circ} \\
& V=1075.49(17) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007)
$T_{\text {min }}=0.504, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \quad 111$ parameters
$w R\left(F^{2}\right)=0.096$
$S=1.20$
3587 reflections

Mo $K \alpha$ radiation
$\mu=2.96 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.45 \times 0.36 \times 0.12 \mathrm{~mm}$

7778 measured reflections
3587 independent reflections
2998 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Table 1
Selected bond lengths (\AA).

$\mathrm{Te}-\mathrm{C} 1$	$2.116(3)$	$\mathrm{Te}-\mathrm{Cl}$	$2.5657(11)$
$\mathrm{Te}-\mathrm{N}$	$2.355(3)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 C \cdots \mathrm{Cl}^{\mathrm{i}}$	0.96	2.89	$3.822(5)$	163

Symmetry code: (i) $-x+1,-y,-z+1$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB acknowledges the NSF-MRI program (grant CHE0619278) for funds to purchase the diffractometer. HBS acknowledges the DST (New Delhi) for funding. PR acknowledges the CSIR for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2376).

References

Engman, L., Wojton, A., Oleksyn, B. J. \& Sliwinski, J. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 285-292.
Kaur, R., Singh, H. B. \& Butcher, R. J. (1995). Organometallics, 14, 4755-4763.
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, H. B., Sudha, N., West, A. A. \& Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907-913.

supplementary materials

Chlorido $\left\{2-\left[(\right.\right.$ dimethylamino $)$ methyl]phenyl- $\left.\kappa^{\mathbf{2}} N, C^{1}\right\}$ tellurium

P. Rakesh, H. B. Singh and R. J. Butcher

Comment

Attempts to synthesize protonated bis[2-(dimethylaminomethyl)phenyl]ditelluride resulted in the formation of 2-(N,Ndimethylaminomethyl)phenyl)tellurenyl chloride, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe}$, (1) a compound which had been previously prepared via a different method (Singh et al., 1990). The structure of $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe}$ contains isolated molecules with no close $\mathrm{Te} \cdots \mathrm{Cl}$ intermolecular contacts, and is chemically related to a previously published structure (Engman, et al., 2004), even though it had been prepared by the same method as the title compound. However, in this case the compound has crystallized in a centrosymmetric space group, unlike the previously published structure (Engman, et al., 2004) which contained enantiomerically pure, chiral molecules. In all other aspects the metrical parameters are similar. The molecules arelinked into dimers by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Experimental

A stirred solution of bis[2-(dimethylaminomethyl)phenyl]ditelluride (Kaur et al., 1995) ($0.5 \mathrm{~g}, 0.94 \mathrm{mmol}$) in diethylether $(10 \mathrm{ml})$ was treated with $\mathrm{HCl}(3 \mathrm{ml}$ in 20 ml distilled water). The reaction mixture was further stirred for 10 min . The resulting reaction mixture was evaporated to one third of its original volume and ethanol (5 ml) was added to get a yellow solid. It was redissolved in ethanol and stored in the refrigerator to get yellow needles of X-ray quality crystals. Yield 0.2 g , $35 \% \mathrm{mp} 121^{\circ} \mathrm{C}$ (lit value $121^{\circ} \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClTe}: \mathrm{C}, 36.37 ; \mathrm{H}, 4.07 ; \mathrm{N}, 4.37$. Found C, $36.44 ; \mathrm{H}, 4.04 ; \mathrm{N}, 4.66$.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.95-0.97 \AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)\right]\right.$.

Figures

Fig. 1. Diagram of the contents of the asymmetric unit of $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe}$. Atomic displacement ellipsoids are drawn at the 30% level.

Fig. 2. The molecular packing for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe}$ viewed down the c axis. $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ secondary interactions are shown by dashed lines.

supplementary materials

Chlorido $\left\{2-\left[(\right.\right.$ dimethylamino $)$ methyl] phenyl- $\left.\kappa^{2} N, C^{1}\right\}$ tellurium

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClNTe}$
$M_{r}=297.25$

$$
D_{\mathrm{x}}=1.836 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=6.4514$ (6) \AA
$b=7.0287$ (7) \AA
$c=23.847(2) \AA$
$\beta=95.967(9)^{\circ}$
$V=1075.49(17) \AA^{3}$
$Z=4$

$$
F(000)=568
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3931 reflections
$\theta=5.1-32.6^{\circ}$
$\mu=2.96 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Irregular plate, pale yellow
$0.45 \times 0.36 \times 0.12 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
$T_{\text {min }}=0.504, T_{\text {max }}=1.000$
3587 independent reflections
2998 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=32.7^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-6 \rightarrow 10$

7778 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.096$
$S=1.20$
3587 reflections
111 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0327 P)^{2}+1.2847 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=2.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.98$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Te	$0.58681(4)$	$0.01772(4)$	$0.423777(10)$	$0.03896(9)$
Cl	$0.29601(17)$	$-0.23269(17)$	$0.41307(5)$	$0.0537(3)$
N	$0.8374(5)$	$0.2560(4)$	$0.41417(13)$	$0.0372(6)$
C 1	$0.5512(6)$	$0.0787(5)$	$0.33640(14)$	$0.0347(7)$
C 2	$0.3769(6)$	$0.0346(6)$	$0.29976(16)$	$0.0413(8)$
H2A	0.2649	-0.0291	0.3127	0.050^{*}
C3	$0.3712(7)$	$0.0865(7)$	$0.24370(18)$	$0.0505(10)$
H3A	0.2543	0.0571	0.2190	0.061^{*}
C4	$0.5367(8)$	$0.1816(6)$	$0.22353(17)$	$0.0515(10)$
H4A	0.5311	0.2154	0.1857	0.062^{*}
C5	$0.7099(7)$	$0.2255(5)$	$0.26028(16)$	$0.0456(9)$
H5A	0.8212	0.2899	0.2471	0.055^{*}
C6	$0.7191(6)$	$0.1741(5)$	$0.31665(15)$	$0.0366(7)$
C7	$0.9058(6)$	$0.2144(6)$	$0.35786(15)$	$0.0416(8)$
H7A	0.9982	0.1052	0.3604	0.050^{*}
H7B	0.9816	0.3225	0.3450	0.050^{*}
C8	$0.7367(8)$	$0.4460(6)$	$0.4157(2)$	$0.0588(12)$
H8A	0.8373	0.5433	0.4104	0.088^{*}
H8B	0.6837	0.4636	0.4515	0.088^{*}
H8C	0.6240	0.4539	0.3861	0.088^{*}
C9	$1.0127(6)$	$0.2409(7)$	$0.45859(18)$	$0.0538(11)$
H9A	1.1119	0.3397	0.4537	0.081^{*}
H9B	1.0786	0.1191	0.4562	0.081^{*}
H9C	0.9620	0.2539	0.4948	0.081^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te	$0.03675(13)$	$0.04765(15)$	$0.03311(13)$	$0.00064(11)$	$0.00659(8)$	$0.00140(11)$
Cl	$0.0484(5)$	$0.0601(6)$	$0.0536(6)$	$-0.0112(5)$	$0.0102(4)$	$0.0036(5)$
N	$0.0340(14)$	$0.0375(15)$	$0.0403(16)$	$0.0027(12)$	$0.0043(12)$	$-0.0043(13)$
C 1	$0.0397(17)$	$0.0331(15)$	$0.0320(16)$	$0.0061(14)$	$0.0069(13)$	$-0.0021(13)$
C 2	$0.0409(18)$	$0.0428(19)$	$0.0399(19)$	$0.0057(16)$	$0.0039(14)$	$-0.0059(16)$
C 3	$0.057(2)$	$0.050(2)$	$0.042(2)$	$0.014(2)$	$-0.0078(18)$	$-0.0079(18)$
C 4	$0.079(3)$	$0.039(2)$	$0.0348(19)$	$0.010(2)$	$0.0016(19)$	$0.0035(16)$
C 5	$0.066(3)$	$0.0367(18)$	$0.0357(19)$	$-0.0026(18)$	$0.0112(17)$	$0.0009(15)$
C 6	$0.0438(18)$	$0.0320(16)$	$0.0348(17)$	$-0.0002(14)$	$0.0071(14)$	$-0.0014(14)$

C7	$0.0404(18)$	$0.049(2)$	$0.0364(18)$	$-0.0033(16)$	$0.0097(14)$	$-0.0003(16)$
C8	$0.071(3)$	$0.043(2)$	$0.061(3)$	$0.007(2)$	$0.000(2)$	$-0.012(2)$
C9	$0.042(2)$	$0.074(3)$	$0.043(2)$	$-0.007(2)$	$-0.0038(17)$	$-0.004(2)$

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Te}-\mathrm{C} 1$	2.116 (3)
Te-N	2.355 (3)
$\mathrm{Te}-\mathrm{Cl}$	2.5657 (11)
$\mathrm{N}-\mathrm{C} 9$	1.471 (5)
$\mathrm{N}-\mathrm{C} 7$	1.486 (5)
$\mathrm{N}-\mathrm{C} 8$	1.487 (5)
C1-C2	1.385 (5)
C1-C6	1.397 (5)
C2-C3	1.383 (6)
C2-H2A	0.9300
C3-C4	1.387 (7)
C3-H3A	0.9300
C4-C5	1.382 (6)
$\mathrm{C} 1-\mathrm{Te}-\mathrm{N}$	76.45 (13)
$\mathrm{C} 1-\mathrm{Te}-\mathrm{Cl}$	92.14 (10)
$\mathrm{N}-\mathrm{Te}-\mathrm{Cl}$	168.59 (8)
C9-N-C7	111.0 (3)
$\mathrm{C} 9-\mathrm{N}-\mathrm{C} 8$	110.7 (3)
$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 8$	111.7 (3)
C9-N-Te	111.3 (3)
$\mathrm{C} 7-\mathrm{N}-\mathrm{Te}$	102.7 (2)
$\mathrm{C} 8-\mathrm{N}-\mathrm{Te}$	109.3 (3)
C2- $21-\mathrm{C} 6$	120.1 (3)
C2- $\mathrm{Cl}^{-}-\mathrm{Te}$	125.0 (3)
C6- ${ }^{\text {C1- }}$ -	114.9 (3)
C3-C2-C1	119.3 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	121.2 (4)
C2-C3-H3A	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
C5-C4-C3	119.3 (4)
C5-C4-H4A	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.4
C4-C5-C6	120.5 (4)
C4-C5-H5A	119.8
$\mathrm{C} 1-\mathrm{Te}-\mathrm{N}-\mathrm{C} 9$	-152.7 (3)
$\mathrm{Cl}-\mathrm{Te}-\mathrm{N}-\mathrm{C} 9$	-154.3 (3)
$\mathrm{C} 1-\mathrm{Te}-\mathrm{N}-\mathrm{C} 7$	-33.9 (2)
$\mathrm{Cl}-\mathrm{Te}-\mathrm{N}-\mathrm{C} 7$	-35.5 (5)
$\mathrm{C} 1-\mathrm{Te}-\mathrm{N}-\mathrm{C} 8$	84.8 (3)
$\mathrm{Cl}-\mathrm{Te}-\mathrm{N}-\mathrm{C} 8$	83.2 (5)
$\mathrm{N}-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 2$	-160.8 (3)

C4-H4A	0.9300
C5-C6	$1.387(5)$
C5-H5A	0.9300
C6-C7	$1.500(5)$
C7-H7A	0.9700
C7-H7B	0.9700
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
C9—H9A	0.9600
C9-H9B	0.9600
C9-H9C	0.9600
C6-C5-H5A	119.8
C5-C6-C1	$119.7(4)$
C5-C6-C7	$122.4(3)$
C1-C6-C7	$117.9(3)$
N-C7-C6	$109.6(3)$
N—C7-H7A	109.7

0.

109.7
$\begin{array}{ll}\mathrm{N}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} & 109.7\end{array}$
C6-C7-H7B 109.7
H7A-C7-H7B 108.2
$\mathrm{N} — \mathrm{C} 8$-H8A 109.5
$\mathrm{N}-\mathrm{C} 8$ - $\mathrm{H} 8 \mathrm{~B} \quad 109.5$
H8A-C8-H8B 109.5
$\mathrm{N}-\mathrm{C} 8$ - $\mathrm{H} 8 \mathrm{C} \quad 109.5$
H8A-C8-H8C 109.5
$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8$ - $\mathrm{H} 8 \mathrm{C} \quad 109.5$
$\mathrm{N}-\mathrm{C} 9$ - $\mathrm{H} 9 \mathrm{~A} \quad 109.5$
$\mathrm{N}-\mathrm{C} 9$ - $\mathrm{H} 9 \mathrm{~B} \quad 109.5$
H9A-C9—H9B 109.5
$\mathrm{N}-\mathrm{C} 9$ - $\mathrm{H} 9 \mathrm{C} \quad 109.5$
H9A-C9—H9C 109.5
$\mathrm{H9B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C} \quad 109.5$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.4(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.5(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$178.5(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.3(5)$
$\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-178.7(3)$

sup-4

supplementary materials

$\mathrm{Cl}-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 2$	$18.9(3)$
$\mathrm{N}-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 6$	$17.8(2)$
$\mathrm{Cl}-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 6$	$-162.5(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.1(5)$
$\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(6)$

$\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$2.6(4)$
$\mathrm{C} 9-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$	$163.4(3)$
$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$	$-72.6(4)$
$\mathrm{Te}-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$	$44.4(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N}$	$145.9(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N}$	$-35.1(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{C} \cdots \mathrm{Cl}^{\mathrm{i}}$	0.96	2.89	$3.822(5)$	163.

Symmetry codes: (i) $-x+1,-y,-z+1$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

